
S T A T I O N A R Y  E F F L U X  

D U A L - T E M P E R A T U R E  

I .  I .  L i t v i n o v  

I N T O  A V A C U U M  BY A 

F U L L Y  I O N I Z E D  P L A S M A  

UDC 533.9+537.56 

I t  i s  shown that  the m a c r o s c o p i c  p r o c e s s  of p l a s m a  d ischarge  f r o m  an expanding nozzle  i s  
de termined,  when the t h e r m a l  conductivity of e lec t rons  and heat  t r a n s f e r  between the c o m -  
ponents a r e  taken into account,  by a unique d imens ion less  p a r a m e t e r :  the adiabat ic i ty  p a -  
r a m e t e r  cha rac t e r i z ing  the t rans i t ion  f rom adiabat ic  flow of a dense p l a s m a  to the flow of 
compa ra t i ve l y  r a r e f i ed  p l a s m a  when the f ree  path length of the p a r t i c l e s  i s  c o m m e n s u r a t e  
with the c h a r a c t e r i s t i c  dimension of the nozzle .  A numer i ca l  method is  used  to find the 
distr ibution of gas -dynamic  and e lec t r i ca l  p a r a m e t e r s  of the p l a s m a  s t r e a m ,  and the r e l a -  
t ionship between the genera l ized  output p a r a m e t e r s .  I t  i s  shown that the ene rgy  a s soc ia t ed  
with the ions at  infinity, in the l a t t e r  case ,  can be tens of t imes  g r e a t e r  than the ene rgy  in 
adiabat ic  efflux, because of the high t he rma l  conductivity with r e spec t  to e lec t rons ,  but un-  
r e a l i s t i c a l l y  la rge  expansion of the nozzle  is  needed in o rde r  to attain it. ~Singular" flow 
pa t t e rns  occur r ing  when s ta t ionary  d ischarge  of p l a s m a  at  infinity is  calcula ted a r e  a l so  
discussed.  

Theore t ica l  and exper imenta l  invest igat ion of the outflow of ionized gas  into a vacuum has  been the 
subject  of a l a rge  num ber  of l i t e ra tu re  contr ibutions.  These contr ibut ions d iscuss  the flow of r a r e f i e d  
p l a s m a  [1-7] when the mean  f ree  path length X i s  c o m m e n s u r a t e  with or  even l e s s  than the cha r ac t e r i s t i c  
dimension of the source  L, and a lso  h igh-dens i ty  p l a sma  [8-15] such that ~, << L. In the l a t t e r  case ,  c lose  
attention has  been given to the breakdown of ionization equilibrtt tm, t e m p e r a t u r e  equi l ibr ium,  o r  other  
modes  of equi l ibr ium in response  to a decline in the init ial  densi ty of a p l a sma  and i ts  effect  on the g a s -  
dynamic p a r a m e t e r s  of the s t r e a m .  

In addition to the f ac to r s  mentioned,  the t he rma l  conductivi ty of an e lec t ron  gas begins to play a t an -  
gible ro le  as  the densi ty  d e c r e a s e s ,  which leads to inadiabatic  flow r eg imes .  But this effect  was not d i s -  
cussed  in the pape r s  r e f e r r e d  to. Moreover ,  r e su l t s  published in [12] a re  a s s e r t e d  by the authors  of [12] 
to be val id even in the case  k ~ L, and the t he rma l  flux of the e lec t rons  qe, which plays  a pa r t i cu l a r ly  con-  
spicuous role  in this  case ,  dropped out of the s y s t e m  of equations a l together .  

The purpose  of this  pape r  is  to r epo r t  an invest igat ion of the effect  of the t he rma l  conductivity of 
e lec t rons  in p l a s m a  flow through a nozzle  in ~pure form,  n d iscuss ing an idea l ized  case  of d ischarge  of a 
fully ionized du a l - t em pe ra t u r e  p l a s m a  over  a broad range of init ial  densi t ies .  These  r e su l t s  a r e  then c o m -  
pa red  to the conventional  adiabat ic  solution. 

1. Qual i ta t ive ana lys i s  of p l a s m a  flow through a nozzle.  Below, we make  use  of a s y s t e m  of equa-  
t ions fo r  a fully ionized d u a l - t e m p e r a t u r e  p l a s m a  [16]. In the one-d imens iona l  s t a t ionary  case ,  the cont i -  
nuity equation i s  

NITS = X (1.1) 

where  N = N e = N i  i s  the density,  V = V e = V i  is  the veloci ty  of the p l a sma ,  S is  the channel c r o s s  section,  
and I i s  the f lowrate  of the pa r t i c l e s .  
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In place of two separat ion equations of motion for  the e lec t rons  and 
ions, i t  i s  convenient to r e s o r t  to the equation of e lec t ron equil ibrium 

0 = - -  dPB / dX  - -  e N E  + RT (1.2) 

and the equation of motion for the p lasma as a whole 

M N V d V  / dX  ---- - -  d ( P ,  + P~) / dX  (1.3) 

In Eqs.  (1.2), (1.3), R T = -0 .71  NdTe/dX is  the the rmal  driving force .  
In addition, he re  we neglect  the iner t ia  of the e lec t rons  (m /M << 1) and the 
viscosity.  

Of the two energy  equations, we make use of the heat equation for  the 
ions 

-~- NV ~--~+ar~ ~ ~Ta (SIT)= q,,, q,, ="ff3'~ ~-~# (r , - -rd 

and the total equation of energy  t r an s f e r  

5 (Te + T~)] + Sq~ = H = const (1.5) Fig. 1 S N V  [M~V2 2 2r .-f- 

where H is the power of the plasma s t ream.  

The equation deals with the heat  flux 

q,  ----- - -  ~ f l T e  / dX 0% = 3.16 N1'e'% / m) 

(1.4) 

while the ion heat  flux qi is  neglected in Eq. (1.5). 

The ro le  played by the e lect ron thermal  conductivity can be es t imated  with ease  f rom the ra t io  of 
the heat flux qe to the convect ive heat flux 

qe 
L (1.6) 

This makes  i t  evident that the scale of the the rmal  conductivity effect  is  the la rge  length [17] L 0 = 
~ e ~ - / m .  When L ~  L0, the heat flux is of convective order .  When L ~  he, the heat flux qe is  overwhelm-  
ingly large,  and ~ ~ ~fM/m>> i .  Note that, when L ~  ~te, these  resu l t s  a re  valid only in o rd e r  of magnitude, 
but that the i r  accu racy  i nc r ea se s  markedly  [18] even when L / k e  is  of the o rde r  of severa l  units, so that 
we can a r b i t r a r i l y  take L ~ ~e for  the boundary of the range of macroscopic  descr ipt ion in the discussion 
below. The remaining d i scarded  t e rms  in Eqs. (1.2)-(1.5) a re  substantial  on the lengths ~ Xe, and can be 
safely neglected when L >> 2~ e. 

I t  is  c l ea r  f rom Eqs. (1.5) and (1.6) that ~ is  a lmost  independent of N, so that the re la t ive  role  
played by qe declines with increas ing  flowrate I, and the flow tends toward an adiabatic r eg ime  with the 
t empera tu re  T = Te + T i = 9-Te and adiabatic exponent 5/3. The flow p a r a m e t e r s  a re  in t e r re l a t ed  by algebraic 
relat ionships [10, 19, 20]. 

When the e lec t ron  the rmal  conductivity is  brought into the pic ture ,  these  p a r a m e t e r s  a r e  also de-  
pendent upon the behavior of the p rocess , and  the power H in (1.5), in cont ras t  to the p a r a m e t e r s  N, Te, Ti, 
V, is  actually,  because of the inde terminacy  of d Te /d X  in the inlet  c ro s s  section, an unknown se l f -ad jus t -  
ing quantity dependent upon the WinletW p a r a m e t e r s  mentioned, and on the shape of the channel. A c o r r e c t  
solution of this problem p resen t s  the principal  difficulty encountered in the overa l l  problem.  

We seek to c lar i fy ,  qualitatively, the condition of t ransi t ion through the speed of sound in the case  of 
this p lasma flow pa t te rn  accompanied by heating of the plasma.  A convenient model for  this type of p ro -  
cess  [17, 19] is  the polytropic law 

P / p ~ = coast, or T / N ~-1 = coast (1.7) 

where k is  the polytropic exponent. This approximation makes  i t  possible to a r r ive ,  in the usual way via 
the Bernoull i  equation, at the algebraic equation 
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in which the zero  subscr ipt  cor responds  to var iables  taken in the initial c ro s s  section for the integration. 
The ratio MV02/2T0 in (1.8) remains  undetermined for  the t ime being. By la ter  normal iz ing all of the v a r i -  
ables in Eqs. (1.1), (1.7), (1.8) to their  values in this c ro s s  section (small le t ters  replacing capital let ters) ,  
and requir ing that this c ro s s  section coincide with the cr i t ica l  c ro s s  section, for which necessa r i l y  ds /dv=  
0 when s = 1, we find the relationship between energy and t empera tu re  in the cr i t ica l  c ro s s  section so i m -  
portant  for the subsequent discussion: 

M V ,  2 - ~  k (1.9) 
2T, 2 

After  that, all the flow pa rame te r s  can be expressed  with ease in t e r m s  of the veloci ty  

t k q - I  k - - t  2 2 v2' n = t(~-l) -', s = n - l v  -1 (1.10) 

These dependences are  plotted in Fig. 1 for different k values. Clearly,  when k> 1 the veloci ty max-  
i m m n  is attained at infinity as t ~  0, sothatv~2: = (k+ 1 ) / ( k - 1 ) .  Hence we obtain the usual v ~ = 2  for the 
adiabatic exponent. When k -  < 1, the veloci ty inc reases  without bound over  the length of the channel. Con- 
sequently, supplying heat to the supersonic par t  of the nozzle when there is appropriate  expansion of the 
nozzle brings about an inc rease  in the rate of discharge through the nozzle.  

We real ize  f rom Eq. (1.9) and Fig. 1 that the velocity of the p lasma s t r eam passes  through a Wpoly- 
t r op i c ,  speed of sound a ,  = kq-k'P,/p,, where now P ,  = P c * +  Pi*, in the nozzle cr i t ical  c ro s s  section (nozzle 
throat section). This resul t  is in agreement  with the conclusions drawn for an ord inary  gas [20]. The de-  
pendence of the dimensionless  velocity on the c ros s  section in the subsonic par t ,  for different k, is a lmost  
identical, so that here  it suffices to consider  the solution in the supersonic  part .  This solution is  joined 
below to the polytropic solution in the throat  section. Naturally,  this solution will be at var iance  with the 
polytropic solution when this distance is sufficiently great.  But this approximation is highly useful 
over  a broad region [17, 21]. The exact solution also enables us to find the dependence of the effective in-  
dex k on other pa r ame te r s  charac te r iz ing  the p lasma flow pat tern as a whole. 

2. System of equations for calculations,  and its special  features .  In o rder  to reduce the sys tem to a 
form suitable for  the Runge-Kutta numer ica l  method, we take as the unknowns the var iables  Te, Ti, and 
the ion energy  W. The equations for T e and T i a re  derived f rom Eqs. (1.5) and (1.4). The equation for W 
is derived f rom the m o m e n t u m  equation (1.3) with the relat ions - N ' / N  = S ' / S  + W' /2W f rom (1.1) taken into 
account, while the derivative T '  = T T_ + T! in the r ight-hand member  of the eqtmtion is expressed  in t e r m s  

e 1 " " a"  tak re  ect of the equations for  T e and T i. Here and in what follows, the p r ime  denotes d e n y  t i res  en with sp 
to X. 

As we learn f rom Eqs. (1.4) and (1.5), these equations contain thei r  own charac te r i s t i c  scales  within 
them so that the solution as a whole is dependent upon the nozzle contour. W e  take as such the normal ized  
c ros s  section in the form of 3 rounded-off  cone: 

s (x )  = i - t -x  ~, x----- X / X .  (2.1) 

The essent ia l  features  of the solution that a re  due to the indeterminacy of the power H in Eq. (1.5) 
are  dealt with mos t  s imply at the outset, using the example of flow such that Ti = 0; the case  T i ~ 0 will be 
discussed later .  
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Flow such that  T i -  0. Equation (1.5), in which T -  Te, is  m o r e  conveniently spel led  out, because of 
the inde te rminacy  of H, in t e r m s  of the p a r a m e t e r s  in the throa t  (cri t ical)  section: 

s ~  s,~e* 5 (T~ --  T~*) (2.2) T~' --  - ' 7 - -  r~, '  = W --  W, + T 

Later ,d iv id ing  Eq. (2.2) by T~ and then normal i z ing  all of the remain ing  quanti t ies by the i r  values  at 
X = 0 (and the coordinate  X by X,)  we find, with Eq. (1.9) taken into account,  

where  t e S / 2  = ~ e / ~ * ,  and f l = I X , / S , ~ e *  i s  the d imens ion less  p a r a m e t e r  of the flow pa t te rn .  

Similar ly ,  we have the equation for  the d imens ion less  ene rgy  

t s' t ' (2.4) 

The d imens ion less  t e m p e r a t u r e  gradient  r e , '  appear ing  in Eq. (2.3) is  found f r o m  the polytropic  so -  
lution of Eq. (1.10). By exp re s s ing  n and w in t e r m s  of t in the equation nZw = s -a, and substi tut ing the s e -  
r i e s  t=  I + T l X + . . . ,  we find, f r o m  the equation o f  the coeff icients  a t tached to x 2, 

V2-(k -- t) (2.5) 
�9 ~ = -  V ~  =t~,' 

Similar ly ,  by using Eq. (2.5), we get w ,  ' =  et=2~f2/~fk+ 1. 
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TABLE 1 

Gas ~ in . to  3 lCmi n Wraax/Woo 

H 
H2 
He 
Li 
N~ 
Ar 
Fe 
Zs 
Hg 

�9 23.3 
t6.5 
tl.6 
8.85 
4.41 
3.70 
3.t2 
2.02 
1.65 

t.208 
1.203 
t.i99 
t.t97 
t.t935 
1.1930 
t.t926 
t.19t8 
1.t9t6 

6.5 
8.85 

12.1 
t6.2 
3t .5 
38.3 
45.0 
68.3 
84.0 

And, finally, the flow p a r a m e t e r / 7 ,  a f t e r  substitution for  the 
case  T i -  0, acqui res  the f o r m  

1 ,%*v, x .  2 V2 V r - ~  - V M  x ,  (2.6) 
- -  3 . t 6  T** ~e *~-~ ~ - ~  ~,,'-'* 

where  re* = (8Te*/~m)l/z i s  the random t h e r m a l  ve loc i ty  of the e l ec -  
t rons .  

The mos t  e ssen t i a l  quantity in Eq. (2.6) is  the p a r a m e t e r  

, , / ' ~ m  x ,  (2.7) 9~ Y M  

defined as  the ra t io  of the c h a r a c t e r i s t i c  d imension X ,  of the nozzle  to the sca le  effect  of t h e r m a l  conduc-  
t ivi ty  L 0. Clear ly ,  in this case  this  i s  the only genera l ized  control  p a r a m e t e r  dependent upon the input p a -  
r a m e t e r s  and on the nozzle  geomet ry .  This  p a r a m e t e r  mus t  a lso  uniquely de te rmine  the effect ive expo-  
nent k. In the l imi t  as rio_. % the flow r eg ime  m u s t  tend to the adiabatic,  and when 8 ~ d e c r e a s e s ,  to the 
i so the rma l .  Taking the above r e m a r k s  into account,  we can quite na tura l ly  t e r m  r ~ the adiabat ic i ty  p a r a m -  
e te r .  In p rac t ice ,  however ,  i t  i s  m o r e  convenient  to specify  the value of k beforehand, and to then find r 
and rio. 

In the case  of smal l  x values ,  the express ion  within the square  b racke t s  in Eq. (2.3) becomes  

1/2 7 [k (w - -  t) - -  5 (1 - -  t , ) l ]z  ~/, 7e~ (5/s - -  k)x 

We read i ly  note, then,  on the basis  of (2.3), that i f  the value of fl i s  l e s s  than r e q u i r e d  for  a specif ied 
k < 5ls, then the express ion  enc losed  within the b races  in Eq. (2.3) will  dec r ea se  in absolute  value with i n -  
c reas ing  x insufficiently rapidly,  and then te will plunge s teeply  to ze ro  because  of the f ac to r  tes/2 in the 
denominator .  S imilar ly ,  i f  r i s  l a rge ,  then a change of sign to pos i t ive  will occur  within the b r ace s  s t a r t -  
ing with a ce r ta in  value of x, i .e . ,  te  will begin to grow. These  phenomena have been a r b i t r a r i l y  denoted 
as the T -  and T t - c r i s e s .  

Clear ly ,  in o r d e r  to a r r i v e  at  a solution sat is fying the requ i red  conditions at  infinity Te-*  0, T e ' - *  0, 
i t e ra t ive  adjus tment  of the p a r a m e t e r  rj(k) i s  cal led for.  This p rocedu re  is  equivalent  to the a b o v e - m e n -  
tioned adjus tment  of the power  in the inlet  c r e s s  section.  Actually,  the inlet  gradient  T ~ , ,  and in this sub-  
stitution r~ i s  an eigenvalue of the nonl inear  boundary p rob lem.  

In o r d e r  to de te rmine  the f i r s t - o r d e r  approximat ion rl(k),  we cons ider  the behavior  of the solution in 
the neighborhood of x=  0. Substituting the s e r i e s  into Eqs. (2.3) and (2.4) for  that  purpose ,  we find, for  the 
ze ro  degree ,  

~1 # = "gl' el  ~--- --2T1 / (k - -  i )  

i .e . ,  the s a m e  as  for  the polyt rope.  The subsequent  coeff ic ients  in the expansion of T i and s i a re  then ex-  
p r e s s e d  in t e r m s  of +1, s l ,  and/~. Recal l ing fur ther  that  1+21 is  finite and v e r y  s m a l l ,  in fac{ tending to 
ze ro  in the l imi t  as  k -~ 1, for  the poly t rope  as  k-~5/s,  we put +s m 0 in the solution in o r d e r  to de te rmine  
~l(k). 

Hence,  

5 V2 (k - i)~ 
3 Vk--4-i ~/,- -  k (2.8) 

This  exp res s ion  s a t i s f i e s  the requ ired  dependence  k ~  ~ qual i ta t ively.  

Adjustment  of flj(k) was c a r r i e d  out au tomat ica l ly  by dividing the in terva l  A flj between two adjacent  r j  
co r responding  to the T - c r i s i s  a n d T ' - c r i s i s i n  half.  As r j  i s  ref ined in the calcula t ions ,  the coord inate s  of 
the c r i s e s  become shi f ted to  higher  x va lues .  

Flow such that  T i ~ 0. By  analogy with Eq. (2.3), we now have 

t 
- -  5 (1 T + - Y , / H  ,.,= ft,.' + @ [k(,,,- t) '.+', ll , (2.9) 

i 

s i c  "- t 
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Now multiplying the equations for  W and T i by the rat io  X , / T e ,  we obtain in dimensionless  form 

T [ k ( i + ~ * ) - - w  t,+--g-ti = ' T t ,  + T  --te 3 XT* 

�9 2 w' 2 Q~ s X ,  - r  (2.11) 

In contrast to the general rule, the temperature T i in Eqs. (2.9)-(2.11) was normalized by T*, with 
t ~ = r  Moreover ,  the adjustment pa r ame te r  ~ in Eq. (2.9), in the general  case  r ,  ~ 0, becomes 

fi = (t + ~ , ) I X ,  / 8 , ~ *  

In o rde r  to reduce  the las t  t e r m s  in Eqs. (2.I0) and (2.11), denoted as BA=B* bA, while recal l ing  
E q s .  (1 .1)  a n d  (1 .9 ) ,  w e  f i n d  

ba = t,-- t i 
SW l e/= 

2,n v~* X. 4 1/~ 8 ~ B* : M V, ke * =  I/~-k ~t'--~-~, 

Consequently, heat  t r a n s f e r  between the components is  de termined by the same parameter/~* as the 
heat conduction effect.  

When Bj is  adjusted, the p a r a m e t e r s  flj~ and B~ can be found f rom the equations 

~j~ = t.58 --V ~-7 
~j 6.32 gs 

~'E (1 + ~,)~l,' B i*  = k (l + ~,)~ (2.12) 

In o r de r  to de te rmine  the dependence r (k), we reca l l  that the t empera tu re  T i in a h igh -dens i ty s t r eam 
(k~S/3) mus t  tend to T e ( ~ , ~  1) in the case  of intense heat t r a n s f e r  (QA~ N2). As k dec reases ,  the ions de 
not have t ime to heat  up, so that r , ~ 0 .  Substituting the s e r i e s  into Eqs. (2.9) and (2.11) once again, and 

�9 �9 ( o )  �9 setting the coeff iments  at tached to x equal, we a r r ive  at the formulas  

T1 e = T1 et "[1 i : - -  1/3 ~@81 -[- B *  (1 - -  T , ) ,  s = -- 21:1/(k - -  t )  (2.13) 

Clearly.  the values of r l e  and T1 i, where r 1 iS now the dimensionless  initial gradient  of the total t em-  
pe ra tu re  

T~ = ( ~  + ~i) / (1 + ~,) 

must  be assigned in o rde r  to join the solution to the polytropic solution. 

Here  r te  and r l i  remain  a r b i t r a r y  for  the t ime being. But it  is  readi ly  real ized,  f rom (2.13), that 
_ . 5  T l i - - * - 7 , e l / 3  , where - e l / 3  tends to the adiabatic gradient  71=-1/~ '3 ,  in the l imit  as k ~'3. Consequently, 

i f  we enter ta in  the natural  assumption that r l i  is proport ional  to r ,  and r l  fo r  all k (rll  = T.Ti) , then we 
again obtain ~'1 e=  ~'1, and we a r r i v e  at the equation 

x ,  (t + ~,)~ 6.32 t ; ~  ~S (2.14) 
i - -  ~, V2 k % -- k 

for  ~, f rom Eqs. (2.13), with Eqs.  (2.12) taken into account. 
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This equation, cubic in ~ , ,  i s  readi ly  solved by  the Cardan method.  

Consequently,  the s y s t e m  (2.9)-(2.11), with Eqs. (2.12) and (2.14) taken into cognizance,  is  en t i re ly  
r eady  for  computat ions  and for  i t e ra t ive  adjus tment  of flj, and of the p a r a m e t e r s  T,J, fij~ Bj*. We can 
again take Eq. (2.8) as  the f i r s t  approximat ion  for  ill" 

Clear ly ,  the in te r re la t ion  accepted  here ,  r l i  = r ,  T1, is  not the only poss ib le  one. 

3. Numer ica l  r e su l t s  and discuss ion.  In the adjus tment  offlj(k),  i t  was found that t he re  is  no T -  
c r i s i s  in evidence as k d e c r e a s e s ,  s t a r t ing  with a ce r ta in  value of k . .  The explanation of this  phenome-  
non is  as follows. Near  the threshold  (as k - - ' k , )  fl"'O, so that,  by putting fl=- 0 and d iscarding the e x p r e s -  
sion within b racke t s  in Eqs.  (2.3) and (2.9), we a r r i v e  at  the solution 

te = (t - -  7 / 21 ~11 arc tg x)'/, 

In the case  Ivl[ <4/7~, this solution fai ls  shor t  of at taining ze ro  in the l imit  as  x--- ~. Hence, for  the 
l imit ing k we have the equation 

(k - -  i ) / ] / k  -5 t = 2 t/9~ / 7~ 

whose solution is  k ,  = 1.19035. 

The va r i ab le  k ,  depends on the contour  r(x) of the nozzle.  As the nozzle  d ivergence  d e c r e a s e s  c o m -  
pa red  to (2.1), k,.-* 1. 

As we found when adjusting fl and/3", the i r  dependences on k a re  well  desc r ibed  by fo rmulas  of the 
type A ( k - k ,  ) /  (~/3 --k), where  A(k) a r e  mul t ip l iea t ive  f ac to r s  of  the o r d e r  of unity, as  plot ted in Fig. 2. 
The cu rves  1 and 4 r e f e r  to the Ti = 0 ease ,  and curves  2, 3 r e f e r  to the T i ~ 0  case .  The dependence T,(k) 
i s  a lso  plotted. The dashed ve r t i c a l  l ines del imit  the range of var ia t ion  of k f rom k ,  = 1.19035 to k=~/a. 

Figure  3 shows the typical  calcula ted distr ibution of gas -dynamic  v a r i a b l e s  fo r  k = 1.3 and the con-  
tours  r(x) accord ing  to (2.1). The polyt ropic  solution i s  handled in s i m i l a r  fashion. He re  and in what fol -  
lows, the cu rves  a r e  plot ted as  a continuous curve  for  the polytrope,  a broken curve  fo r  the case  T i -  0, 
and a do t -dash  curve  for  the ease  T i $ 0, in the compar i son  of the th ree  cases .  Clear ly ,  the overa l l  be-  
havior  of the solution is  v e r y  c lose  to the polyt ropic  var ia t ion.  The dif ference in the behavior  of the t e m -  
p e r a t u r e s  becomes  m o r e  conspicuous as  t i decl ines m o r e  rapidly  than t e with inc reas ing  x, but the total  
t e m p e r a t u r e  t i s  a lso  close to the polyt ropic .  As k - - k , ,  the d i sc repancy  between the exact  solution and 
the polytropio solution widens. I t  i s  a l so  evident that the heat  t r a n s f e r  effect  is  of no substant ia l  i m p o r -  
tance in this ease~ 

In the l imi t  as  k---5/3, the a ccu racy  of the adjus tment  of flj (all the way to the ninth signif icant  digit) 
p roves  inadequate, because  of the la rge  values of fl ~ to advance the solution apprec iably  fur ther  in the x-  
direct ion.  

The ion ene rgy  distr ibution for  different  k values ,  and the dis tr ibut ion of the potent ia l  d i f ference in 
the s t r e a m  (Ti ~ 0) no rma l i zed  by W,,  i s  shown in Fig. 4 (the potent ial  distr ibution is  indicated by the b ro-  
ken curve) .  The equation for  the potent ia l  d i f ference  e [A~ol i s  de r ived  f r o m  Eq. (1.2) 

el Aq~ I' - u/ t.'] k (, ~ , )  [te (--~ + ~ - )  - 1 " 7 t  

F igure  4, and ana lys i s  of Eqs.  (1.~-), (1.3), support  an in te res t ing  conclusion on the ro le  p layed  by 
the t h e r m a l  dr iving force  R T. Since R T i s  an in ternal  force ,  i t  has  no effect ,  on the whole, on acce le ra t ion  
o f t h e p l a s m a  (see Eq. (1.3)), but does have a substant ia l  e f fec t  on another  in terna l  force ,  the e l ec t r i c  force ,  
and on the re la t ionship  between the potent ia l  drop e IAql and the ion energy  w. F o r  example ,  in the l imi t  
as  k - - -k , ,  when T i ~ 0 ,  the force  eNE i s  g r e a t e r  than -dPe/dX by the amount R T, so that  the potent ia l  d i f -  
f e r ence  can be g r e a t e r  than the ion energy.  In the l imit  as k-~5/3, when the contr ibution made by the force  
- d P i / d X  i s  l a rge ,  e [A~o[ i s  l e s s  than w, but a comple te ly  de te rmined  finite p r e s s u r e  drop m a t e r i a l i z e s  in 
the s t r e a m  in the ease  of adiabat ic  flow (k=S/3). 

One impor tan t  cha r ac t e r i s t i c  of the p l a s m a  flow r eg ime  is  the ion ene rgy  at  infinity. I t s  value can 
be found f r o m  Eq. (1.5): 

H 5 2 Ix,~l 
w~ =/-W~, = t + ' X -  + k ~ (3.1) 
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The las t  t e r m  appear ing  in Eq. (3.1) defines the con t r i -  
bution made by the t h e r m a l  conductivity of the e lec t rons .  In 
the l imi t  as  f~--~ ~o (adiabat), the role  p layed  by qe is  negligible,  
and then we obtain the usual value woo=v~ =4. 

In a fo rma l  sense ,  the ion ene rgy  at  infinity, in the l imi t  
as  k - - k . ,  can be as  l a rge  as  we wish, but some  essen t ia l  p h y s -  
ical  r e s t r i c t i ons  make  t h e m s e l v e s  fel t  in this context. The 
f i r s t  such res t r i c t ion  is  the r equ i r emen t  that  the conditions of 
mac roscop ic  descr ip t ion be met .  Then ,  assuming  ke*~ X .  in 
the throa t  (cri t ical)  sect ion,  we can compi le  a table  of l imit ing 
values for  the s eve ra l  gases  in question. 

This  r e s t r i c t i on  p laced on w~o co r r e sponds  phys ica l ly  to 
the fact  that  the heat  flux of e lec t rons  qe* cannot exceed i ts  
own na tura l  upper  l imit ,  that  of the random heat  flux 

q," = 2T.* N,v,* / 4 (3.2) 

In the l a t t e r  case ,  we find 

g gg w=~ - i + -~- + ~ -  

This  iS roughly 4/s t i m e s  g r e a t e r  than the tabu la r  values .  

I t  mus t  a l so  be reca l l ed  that  the condition ~e* <X,  does 
not cons is tent ly  eventuate in the condition ke <X s t r eamwise ,  

in the case  of flow of a s t r e a m  with heating. Actually,  when we r eca l l  that  ~e=~e*te2/n ,  we have ~e = 
he*n 2k-3 for  the polyt rope.  Similar ly ,  we find X ~ X.w-~ -~ f r o m  the continuity equation, and he re  
w - ~  ~ 1. Then the condition ~e <X in the s t r e a m  goes over  into the inequali ty n 2K-2"5 < X , / k e * ;  k> 1.25 
is  r equ i red  to m e e t  that  condition in the l imi t  as n~o --~ 0. When k < 1.25, s t a r t ing  with a ce r ta in  value of x, 
the initial  condition X/~e*>>l no longer  holds, and the kinetic solution becomes  mandatory  l a t e r  on. 
It is in teres t ing that, in this case ,  the p a r a m e t e r s  flj, and consequently the s t r e a m  power  H as well, 
a r e  known with sufficient  accuracy ,  so that  the only p rob l em in the kinetic solution is  to ref ine the spat ia l  
behavior  of the ave raged  p a r a m e t e r s  and of the par t i c le  distr ibution functions. 

The second condition for  val idat ing the mac roscop ic  equations is the condition for  the smal l  Debye 
radius  6 <<X. I t  can be shown with ease  that  this condition, which conver t s  to the inequal i ty  n~ << 
X , / 5 .  in the case  of a poly t rope ,  i s  fulfilled all  the way to k = 1 in the l imi t  as  n ~  -~ 0. Consequently,  the 
t h e r m a l  ene rgy  of the e l ec t rons  becomes  conver ted  complete ly ,  thanks to the e lec t r i c  field E, into the k i -  
net ic  ene rgy  of the ions at infinity, despi te  the breakdown of the condition ke <X in the s t r e a m .  

Le t  us now c o m p a r e  the ion energy  to the ene rgy  in adiabatic  flow. Limit ing ion ene rg ie s  at  infinity 
a r e  plotted for  different  k in Fig.  5, and theore t ica l ly  p red ic ted  va lues  for  suff icient ly l a rge  x (all the way 
up to x = 109) a r e  a lso  plotted. The i r  va lues  a re  r e f e r r e d  to the adiabat ic  energy  at  infinity w ~ .  Accord -  
ing to Fig. 5 and Table  1, in the l imi t  as  k -~k*  the ion energy  at  infinity can become tens  of t imes  g r e a t e r  
than the adiabat ic  energy.  But even when x= 109 the theore t ica l ly  p red ic ted  ene rgy  iS not m o r e  than 3.7 
t imes  g r e a t e r  than the adiabat ic  energy.  This amounts  to roughly W~ 9Te*. At r ea l i s t i c  va lues  x ~  10 t to 
102, the ion ene rgy  ~ 5 to 7Te* , which co r re sponds  m o r e  or  l e s s  to the potent ial  of an i so la ted  body in a 
p l a s m a  [5]. This  ion ene rgy  has  been noted on m e r e  than one occasion in exper imen t s  [5-7, 15]. Taking 
the above into account,  we note that  the flow of r a r e f i ed  p l a s m a  such that  ke* ~ X ,  i s  actual ly  c h a r a c t e r i z e d  
by v e r y  low eff ic iency ~T = F2/2MII-I, where  F(X) = S(P + iVIIV), s ince inadmiss ib ly  g r e a t  expansion of the 
nozzle  is  r equ i red  in o rde r  to attain ~T ~" 1 (see Fig. 6). This  boss of eff ic iency is  due to the heavy heat  
losses  beyond the a c c e l e r a t o r  cutoff (this heat i s  used up in ~heating n infinity). A s i m i l a r  conclusion r e -  
ta ins  i t s  val idi ty  for  p l a s m a  a c c e l e r a t o r s  of other types ,  in which the re  is  d i r ec t  t he rma l  contact  between 
the d ischarge  region and infinity. 

Note that this  loss  m e c h a n i s m  is  not mani fes ted  to i t s  full under  l abo ra to ry  conditions, s ince the 
channel length i s  ac tual ly  l imi ted  by the wall, and the e lec t rons  t r apped  by the charged  wall  l aye r  c a r r y  to 
the wall  a power  H e = 1 - 2 T e ,  i .e . ,  energy  lo s ses  for  each  e lec t ron  amount  to not m o r e  than 2Te in con t r a s t  
to ~ Te Mu~/m in the case  of outflow to infinity a t  ke* ~" X . .  And, in effect,  in the p r e s e n c e  of wall  we r e -  
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quire,  in place of the conditions applying to T e at infinity, the boundary condition at the wall ,  in o rde r  to 
adjust  the solution; and tiffs boundary condition can be der ived with ease  by analogy with the der ivat ion of 
the diffusional s t r e a m  of pa r t i c l e s  [18], by making use  of the above-ment ioned  random heat flux (3.2): 

T e --_ - -  ]i~e dT~ / d X  ( x  = x )  (3.3) 

w h e r e f  is  a kinetic coeff icient  of the o rde r  of unity.  Constra int  (3.3) de t e rmines  the poss ib i l i ty  of suc-  
cessful  l abo ra to ry  simulat ion of the flow of p l a s m a  to infinity. In pa r t i cu la r ,  in this case  of r a r e f i e d  p l a s -  
ma,  the two f low r e g i m e s  mus t  d iverge  marked ly  because of the heat  flux di f ferences .  

I t  i s  worth r emark ing ,  however,  that  al l  in fe rences  as  to the s ta te  at  infinity were  drawn for  the s t a -  
t i ona ry  mode.  In the case  of the ~e* ~ X ,  flow pat te rn ,  when p r o c e s s e s  taking p lace  over  v e r y  long channel 
lengths a r e  essent ia l ,  the actual  flow r eg i me  is  in effect  nonstat ionary,  and the p rob l em ca l l s  for  c l o s e r  
scrut iny.  

The behavior  of the solution in " t r a n s - c r i s i s "  r e g i m e s  was a lso  c lar i f ied  in the cour se  of the c o m -  
putations.  I t  was found that when fl<fir (T -c r i s i s ) ,  t e plunges s teeply  to ze ro  with a slow inc r ea se  in w, 
as previous ly .  The a l te rna t ive  case  f l> f i~o  ( T ' - c r i s i s )  was m o r e  in te res t ing  (see Fig. 7; case  T i ~ 0, k=  
1.5). In r e sponse  to a slight r i s e  

t e decl ines at f i r s t ,  then i n c r e a s e s  and leve ls  off at a constant  value. The energy  due to the i nc r ea se  in te  
(and a lso  in ti) i n c r e a s e s  m o r e  rapidly  than at ]z = 1. Tiffs solution co r re sponds  fo rma l ly  to the p r e sen ce  of 
a heat  source  u p s t r e a m .  When # = 4 to 8, the t e m p e r a t u r e s  r i s e  so rap id ly  that flow becomes  blocked. This  
phenomenon is  r emin i scen t  of the heat  c r i s i s  f ami l i a r  in ae rodynamics  [19]. 

In conclusion, the author thanks I. K. Fe t i sov  for helpful discussion.  
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