STATIONARY EFFLUX INTO A VACUUM BY A
DUAL-TEMPERATURE FULLY IONIZED PLASMA

I. I. Litvinovy -UDC 533.9+537.56

It is shown that the macroscopic process of plasma discharge from an expanding nozzle is
determined, when the thermal conductivity of electrons and heat transfer between the com~
ponents are taken into account, by a unique dimensionless parameter: the adiabaticity pa~
rameter characterizing the transition from adiabatic flow of a2 dense plasma to the flow of
comparatively rarefied plasma when the free path length of the particles is commensurate
with the characteristic dimension of the nozzle. A numerical method is used to find the
distribution of gas-dynamic and electrical parameters of the plasma stream, and the rela-
tionship between the generalized output parameters. It is shown that the energy associated
with the ions at infinity, in the latter case, can be tens of times greater than the energy in
adiabatic efflux, because of the high thermal conductivity with respect to electrons, but un-
realistically large expansion of the nozzle is needed in order to attain it. "Singular® flow ‘
patterns occurring when stationary discharge of plasma at infinity is calculated are also
discussed.

Theoretical and experimental investigation of the outflow of ionized gas into a vacuum has been the
subject of a large number of literature contributions. These contributions discuss the flow of rarefied
plasma [1-7] when the mean free path length A is commensurate with or even less than the characteristic
dimension of the source L, and also high-density plasma [8~15] such that A « L. In the latter case, close
attention has been given to the breakdown of ionization equilibrium, temperature equilibrium, or other
modes of equilibrium in response to a decline in the initial density of a plasma and its effect on the gas-
dynamic parameters of the stream.

In addition to the factors mentioned, the thermal conductivity of an electron gas begins to play a tan-
gible role as the density decreases, which leads to inadiabatic flow regimes. But this effect was not dis-
cussed in the papers referred to. Moreover, results published in [12] are asserted by the authors of {12]
to be valid even in the case A € L, and the thermal flux of the electrons qg, which plays a particularly con-
spicuous role in this case, dropped out of the system of equations altogether.

The purpose of this paper is to report an investigation of the effeet of the thermal conductivity of
electrons in plasma flow through a nozzle in "pure form,* discussing an idealized case of discharge of a
fully ionized dual-temperature plasma over a broad range of initial densities. These results are then com-
pared to the conventional adiabatic solution.

1. Qualitative analysis of plasma flow through a nozzle. Below, we make use of a system of equa~
tions for a fully ionized dual-temperature plasma [16]. In the one-dimensional stationary case, the conti~
nuity equation is

NVS =TI (1.1)

where N=Ng=Nj is the density, V=Vg=Vj is the velocity of the plasma, S is the channel cross section,
and I is the flowrate of the particles.
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Liry 17 In place of two separation equations of motion for the electrons and
i ions, it is convenient to resort to the equation of electron equilibrium
1.3 . 0= —dP,/dX — eNE + Rr (1.2)
10 and the equation of motion for the plasma as a whole
1.0 V]
AP MNVAV | dX = — d (P, + P) [ dX (L.3)
In Egs. (1.2), (1.3), Rp==0.71 NdTg/dX is the thermal driving force.
L4 In addition, here we neglect the inertia of the electrons (m/M « 1) and the
viscosity.
5
2.9 a7 Of the two energy equations, we make use of the heat equation for the
ions
3 ar;, P 3m N
5NV 5+ 5 77 §V)=0a, QA':-A";—.T-:(Te—Ti) (1.4)
v .
4 / ; 14 and the total equation of energy transfer
Fig. 1 SNV (M2 3 (1, + 7)) + Sg. = H = const (1.5)

- where H is the power of the plasma stream.
The equation deals with the heat flux
ge=—%AdT./dX (he=316NT ./ m)
while the ion heat flux q; is neglected in Eq. (1.5). ‘

The role played by the electron thermal conductivity can be estimated with ease from the ratio of
the heat flux qe to the convective heat flux

q, M A,
A e (1.6)

This makes it evident that the scale of the thermal conductivity effect is the large length {17] L=
AeVM/m. When L~ Ly, the heat flux is of convective order. When L= Ag, the heat flux qq is overwhelm-
ingly large, and ¢ & vM/m> 1. Note that, when L= \e, these results are valid only in order of magnitude,
but that their accuracy increases markedly [18] even when L/} is of the order of several units, so that
we can arbitrarily take L> ), for the boundary of the range of macroscopic description in the discussion
below. The remaining discarded terms in Egs. (1.2)-(1.5) are substantial on the lengths ~ A, and can be
safely neglected when L Aq.

It is clear from Eqgs. (1.5) and (1.6) that %, is almost independent of N, so that the relative role
played by qg declines with increasing flowrate I, and the flow tends toward an adiabatic regime with the
temperature T=Te+ Tj=2Te and adiabatic exponent 4. The flow parameters are interrelated by algebraic
relationships [10, 19, 20].

When the electron thermal conductivity is brought into the picture, these parameters are also de-
pendent upon the behavior of the process, and the power H in (1.5), in contrast to the parameters N, Te, Ty,
V, is actually, because of the indeterminacy of dTe/dX in the inlet cross section, an unknown self-adjust-
ing quantity dependent upon the "inlet® parameters mentioned, and on the shape of the channel. A correct
solution of this problem presents the principal difficulty encountered in the overall problem.

We seek to clarify, qualitatively, the condition of transition through the speed of sound in the case of
this plasma flow pattern accompanied by heating of the plasma. A convenient model for this type of pro-
cess {17, 19] is the polytropic law

P /p" = const, or T /N¥1=const 1.7

where k is the polytropic exponent. This approximation makes it possible to arrive, in the usual way via
the Bernoulli equation, at the algebraic equation

([ ] e ws

794



A ] Tig>
AA | - T
l BT y —
7N
‘ i | 78
2.4 7 =4 g 7i==31.J
7 I f ,,,{__
;_/ /%/‘)1 : r —
7 / | 2 ™ I el
| N\ &
2.4 T~ \ ¢
: A - T
G ; | 1 ;\'f ]
; | ’ SN
’/ | LT A~ ]
i 7 =
15 77 VAR 7 2 7 7 / Z J X
Fig. 2 Fig. 3

in which the zero subseript corresponds to variables taken in the initial cross section for the integration.
The ratio MV?/2T, in (1.8) remains undetermined for the time being. By later normalizing all of the vari-
ables in Eqgs. (1.1), (1.7), (1.8) to their values in this cross section (small letters replacing capital letters),
and requiring that this cross section coincide with the critical cross section, for which necessarily ds/dv=
0 when s=1, we find the relationship between energy and temperature in the critical cross section so im~
portant for the subsequent discussion:

MV? &
ZT: = 5 (1.9)

After that, all the flow parameters can be expressed with ease in terms of the velocity
n=tk-D"  ¢=plp? (1.10)

These dependences are plotted in Fig. 1 for different k values. Clearly, when k> 1 the velocity max~
imum is attained at infinity as te— 0, sothatwe’ =(k+1)/{(k—1). Hence we obtain the usual v,,=2 for the
adiabatic exponent. When k= 1, the velocity increases without bound over the length of the channel. Con-
sequently, supplying heat to the supersonic part of the nozzle when there is appropriate expansion of the
nozzle brings about an increase in the rate of discharge through the nozzle.

We realize from Eq. (1.9) and Fig. 1 that the velocity of the plasma stream passes through a "poly-
tropic" speed of sound gy =VkPy/py, where now Py =Pg*+P;*, in the nozzle critical cross section (nozzle
throat section). This result is in agreement with the conclusions drawn for an ordinary gas [20]. The de-
pendence of the dimensionless velocity on the cross section in the subsonic part, for different k, is almost
identical, so that here it suffices to consider the solution in the supersonic part. This solution is joined
below to the polytropic solution in the throat section. Naturally, this solution will be at variance with the
polytropic solution when this distance is sufficiently great. But this approximation is highly useful
over a broad region [17, 21]. The exact solution also enables us to find the dependence of the effective in~
dex k on other parameters characterizing the plasma flow pattern as a whole.

2. System of equations for calculations, and its special features. In order to reduce the system to a
form suitable for the Runge-Kutta numerical method, we take as the unknowns the variables T,, T, and
the ion energy W. The equations for T and Tj are derived from Egs. (1.5) and (1.4). The equation for W
is derived from the momentum equation (1.3) with the relations —N'/N=8!'/8+W'/2W from (1.1) taken into
account, while the derivative T'=T! +Ti' in the right-hand member of the equation is expressed in terms
of the equations for Tg and Tj. Here and in what follows, the prime denotes derivatives taken with respect
to X.

As we learn from Egs. (1.4) and (1.5), these equations contain their own characteristic scales within
them so that the solution as a whole is dependent upon the nozzle contour. We take as such the normalized
cross section in the form of 2 rounded-off cone:

s@@ =142 =z=X/X, 2.1

The essential features of the solution that are due to the indeterminacy of the power H in Eq. (1.5)
are dealt with most simply at the outset, using the example of flow such that T;= 0; the case T; =0 will be
discussed later.
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Flow such that Tj=0. Equation (1.5), in which T= Te, is more conveniently spelled out, because of
the indeterminacy of H, in terms of the parameters in the throat (critical) section:

Su, . Set o, 5
Tl =Ty =W =W, 5 (T.—T.% (2.2)

Later,dividing Eq. (2.2) by T¥ and then normalizing all of the remaining quantities by their values at
X =0 (and the coordinate X by Xy) we find, with Eq. (1.9) taken into account,

W= o e + B — 1) =50 — 1) (2.3)

where te5/ 2= ng/Me*, and B=IXy/Sxue* is the dimensionless parameter of the flow pattern.

Similérly, we have the equation for the dimensionless energy
' t, s’ ’ .
“z_(k‘—_‘)_te‘_;""te (2.4)

The dimensionless temperature gradient to,' appearing in Eq. (2.3) is found from the polytropic so-
lution of Eq. (1.10). By expressing n and w in terms of t in the equation n*w=g"2, and substituting the se-
ries t=1+7x+ ..., we find, from the equation of the coefficients attached to x2,

__Vig—1 _, , : (2.5)
7=

Similarly, by using Eq. (2.5), we get wy'=¢;=2V2/vk+ 1.
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TABLE 1 And, finally, the flow parameter B, after substitution for the

case T; = 0, acquires the form

G *q0® | P ® W

T e | ) Pl N T VRNV (2.6)

' B==m 7= = 316 Mx* :
H .23.3 1,208 6.5 ¢
gz 1?1(53 i'_ fgg 12:;35 where v *=(8T@/rm)Y/2 is the random thermal velocity of the elec~
Li 8.85 |1.197 16.2 trons.
N2 441 [1.1935] 31.5
%é 3.12 “ggg Zg'g The most essential quantity in Eq. (2.6) is the parameter
Zs 2.02  |1.1918| 68.3
Hg 1.65 |1.1916| 84.0 w1/ X, (2.7)
M A‘g*'

defined as the ratio of the characteristic dimension X, of the nozzle to the scale effect of thermal conduc-
tivity Ly. Clearly, in this case this is the only generalized control parameter dependent upon the input pa-
rameters and on the nozzle geometry. This parameter must also uniquely determine the effective expo-
nent k. In the limit as f°— =, the flow regime must tend to the adiabatic, and when 8° decreases, to the
isothermal. Taking the above remarks into account, we can quite naturally term 8° the adiabaticity param-~
eter. In practice, however, it is more convenient to specify the value of k beforehand, and to then find 8
and B3°.

In the case of small x values, the expression within the square brackets in Eq. (2.3) becomes
YaBlk(w—1)—5(1 —t)| =2, Be; (*/s — R}z

We readily note,then, on the basis of (2.3), that if the value of 8 is less than required, for a specified
k <%, then the expression enclosed within the braces in Eq. (2.3) will decrease in absolute value with in-
creasing x insufficiently rapidly, and then te will plunge steeply to zero because of the factor te5/2 in the
denominator. Similarly, if 8 is large, then a change of sign to positive will occur within the braces start-
ing with a certain value of x, i.e., tg will begin to grow. These phenomena have been arbitrarily denoted
as the T- and T'-crises.

Clearly, in order to arrive at a solution satisfying the required conditions at infinity Te—0, To'—0,
iterative adjustment of the parameter 3;(k) is called for. This procedure is equivalent to the above-men-
tioned adjustment of the power in the 1niet cross section. Actually, the inlet gradient T, , and in this sub-
stitution 8°(k), is an eigenvalue of the nonlinear boundary problem.

In order to determine the first-order approximation 8,(k), we consider the behavior of the solution in
the neighborhood of x=0. Substituting the series into Eqs. (2.3) and (2.4) for that purpose, we find, for the
zero degree,

't]_s = T & = —271 / (k — 1)

i.e., the same as for the polytrope. The subsequent coefficients in the expansion of 7; and &; are then ex-
pressed in terms of 7y, £4, and 8. Recalling further that |7,| is finite and very small, in faci tending to
zero in the limit as k— 1, for the polytrope as k— 5/3, we put 7,= 0 in the solution in order to determine
By(k).

Hence,

B, = 5VZ  (k—1)?
' B Vkt1 Sh—k (2.8)

This expression satisfies the required dependence k(3 °) qualitatively.

Adjustment of Bj(k) was carried out automatically by dividing the interval A B; between two adjacent Bj
corresponding to the T-crisis and T'-crisisin half. As Bjis refined in the calculations, the coordinates of
the crises become shifted to higher x values.

Flow such that T; # 0. By analogy with Eq. (2.3), we now have
] 1 ’ te + ti
te = {’f* T ["’("’"1)"’ (1 T )]} 2.9)

se
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Now multiplying the equations for W and Tj by the ratio X,/ T, we obtain in dimensionless form

w' 1 5 s {0, B o2 Qu 8%, (2.10

P [k (1‘ + T*) - w (tt + 3 tl)] = s (te + 3 tt) - te - 3 ITe* )
, 2 s ’ ’ SX

W=l ) g 2.11)

In contrast to the general rule, the teniperature Tj in Egs. (2.9)-(2.11) was normalized by T%, with
t’§=1',.. Moreover, the adjustment parameter 8 in Eq. (2.9), in the general case T, = 0, becomes

B=(01+4w )X,/ Sxn*
In order to reduce the last terms in Egs. (2.10) and (2.11), denoted as Bp =B* bp, while recalling
Egs. (1.1) and (1.9), we find

by = ——
A swt:/*

Consequently, heat transfer between the components is determined by the same parameter 8° as the
heat conduction effect.

* When Bj is adjusted, the parameters f;° and BJE" can be found from the equations

° = E —FSJ.._.._ R ,_6'2 ﬂ]

7 =128 l/ 2% (4 vy’ Bi* = TFmr - (2.12)
In order to determine the dependence 7(k), we recall that the temperature Tj in a high~-density stream

(k—5/3) must tend to Te (T, 1) in the case of intense heat transfer (Qp ~#N?). As k decreases, the ions do

not have time to heat up, so that ,— 0. Substituting the series into Egs. (2.9) and (2.11) once again, and

setting the coefficients attached to z0 equal, we arrive at the formulas

T =10 = Yyt +B*(l—1,), & =—21/(k—1) (2.13)

Clearly, the values of 7,© and Tii, where Ty is now the dimensionless initial gradient of the total tem-
perature

= (0 + 1)/ (L +14)
must be assigned in order to join the solution to the polytropic solution.

Here 7;© and Tii remain arbitrary for the time being. But it is readily realized, from (2.13), that
7i—=74e,/3, where —& /3 tends to the adiabatic gradient T;=—1/V3, in the limit as l§—>5/3. Consequently,
if we entertain the natural assumption that 7, is proportional to 7, and T; for all k (71 =TTy, then we
again obtain 7,=7;, and we arrive at the equation

trr 832 VEFL B
% = ys  F Gio% (2.14)

for 7, from Eqgs. (2.13), with Eqgs. (2.12) taken into account.
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This equation, cubic in 7, is readily solved by the Cardan method.

Consequently, the system (2.9)-(2.11), with Eqs. (2.12) and (2.14) taken into cognizance, is entirely
ready for computations and for iterative adjustment of BJ, and of the parameters T,J, ,BJ . BJ* We can
again take Eq. (2.8) as the first approximation for B;.

Clearly, the interrelation accepted here, 1'11 =T,Ty, 18 not the only possible one.

3. Numerical results and discussion. In the adjustment of 8(k), it was found that there is no T-
crisis in evidence as k decreases, starting with a certain value of ky. The explanation of this phenome-
non is as follows. Near the threshold (as k—~k,) 83— 0, so that, by putting 3= 0 and discarding the expres-
sion within brackets in Eqgs. (2.3} and (2.9), we arrive at the solution

to={1—7/2]%|arc tg 2)":

In the case l1'1| <4/71r , this solution falls short of attaining zero in the limit as x— «. Hence, for the
limiting k we have the equation

k—1)/VEFT1=2V2/Tn
whose solution is k, =1.19035.

The variable ky depends on the contour r(x) of the nozzle. As the nozzle divergence decreases com-
pared to (2.1), k,—~ 1.

As we found when adjusting 8 and 8°, their dependences on k are well described by formulas of the
type Alk—k,)/ (/3 =k), where A(k) are multiplicative factors of the order of unity, as plotted in Fig. 2.
The curves 1 and 4 refer to the T{=0 case, and curves 2, 3 refer to the Tj #0 case. The dependence Ty (k)
is also plotted. The dashed vertical lines delimit the range of variation of k from ks« =1.19035 to k="%.

Figure 3 shows the typical calculated distribution of gas-dynamic variables for k=1.3 and the con-
tours r(x) according to (2.1). The polytropic solution is handled in similar fashion. Here and in what fol-
lows, the curves are plotted as a continuous curve for the polytrope, a broken curve for the case T;=0,
and a dot-dash curve for the case Tj#0, in the comparison of the three cases. Clearly, the overall be~
havior of the solution is very close to the polytropic variation. The difference in the behavior of the fem-
peratures becomes more conspicuous as t; declines more rapidly than teo with increasing x, but the total
temperature t is also close to the polytropic. As k—k,, the discrepancy between the exact solution and
the polytropic solution widens. It is also evident that the heat transfer effect is of no substantial impor-
tance in this case.

In the limit as k— 9%/, the accuracy of the adjustment of Bj (all the way to the ninth significant digit)
proves inadequate, because of the large values of 8°, to advance the solution appreciably further in the x-
direction.

The ion energy distribution for different k values, and the distribution of the potential difference in
the stream (Tj = 0) normalized by Wy, is shown in Fig. 4 (the potential distribution is indicated by the bro-
ken curve). The equation for the potential difference e IAgol is derived from Eq. (1.2)

elA9] = proe [t (5 +55) — 1712/

Figure 4, and analysis of Egs. (1.2), {1.3), support an interesting conclusion on the role played by
the thermal driving force Rp. Since Ry is an internal foree, it has no effect, on the whole, on acceleration
of the plasma (see Eq. (1.3)), but does have a substantial effect on another internal force, the electric force,
and on the relationship between the potential drop e |A ] and the ion energy w. For example, in the limit
as k—k,, when Tj~0, the force eNE is greater than ~dPg/dX by the amount R, so that the potential dif-
ference can be greater than the ion energy. In the limit as k— %/, when the contribution made by the force
—dPj/dX is large, e |A¢| is less than w, but a completely determined finite pressure drop materializes in
the stream in the case of adiabatic flow (k="%/).

One important characteristic of the plasma flow regime is the ion energy at infinity. Its value can
be found from Eq. (1.5):

we ===+ + 5 O] 3.1)
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—— The last term appearing in Eq. (3.1) defines the contri-
L/——-' bution made by the thermal conductivity of the electrons. In
the limit as 8— « (adiabat), the role played by gg is negligible,
2 and then we obtain the usual value We=Ve=4.

S
N

\

2 “/ 7

/

In a formal sense, the ion energy at infinity, in the limit
as k—ky, can be as large as we wish, but some essential phys-
ical restrictions make themselves felt in this context. The
first such restriction is the requirement that the conditions of
macroscopic description be met. Then, assuming re*E Xy in

NNSARRY

Z i
5 / 1430 5 the throat (critical) section, we can compile a table of limiting
// 2 values for the several gases in question.
4 i~z 4 This restriction placed on w,, corresponds physically to
the fact that the heat flux of electrons qg* cannot exceed its
/ own natural upper limit, that of the random heat flux
2 4 z ‘ gl =2T *N.wv*]4 (3.2)
‘ In the latter case, we find
' " 5 2 /M
/ 2 4 5 8w _
Fig. 7 This is roughly %/; times greater than the tabular values.

It must also be recalled that the condition Ag* <Xy does

not consistently eventuate in the condition Ag <X streamwise,
in the case of flow of a stream with heating. Actually, when we recall that 7\e=}~e*te2/n’ we have Ag=
Ae*n?68 for the polytrope. Similarly, we find X ~X4w™%®n=0% from the continuity equation, and here
w 0%~ 1. Then the condition Ae <X in the stream goes over into the inequality p2K~2.5 <Xx/re*; k>1.25
is required to meet that condition in the limit as no—0. When k <1.25, starting with a certain value of x,
the initial condition X/Ag*>1 no longer holds, and the kinetic solution becomes mandatory later on.
It is interesting that, in this case, the parameters Bj, and consequently the stream power H as well,
are known with sufficient accuracy, so that the only problem in the kinetic solution is to refine the spatial
behavior of the averaged parameters and of the particle distribution functions.

The second condition for validating the macroscopic equations is the condition for the small Debye
radius 6 «X. It can be shown with ease that this condition, which converts to the inequality n0-5(=1) «
Xy /64 in the case of a polytrope, is fulfilled all the way to k=1 in the limit as n,—~0. Consequently, the
thermal energy of the electrons becomes converted completely, thanks to the electric field E, into the ki~
netic energy of the ions at infinity, despite the breakdown of the condition Ag <X in the stream.

Let us now compare the ion energy to the energy in adiabatic flow. Limiting ion energies at infinity
are plotted for different k in Fig. 5, and theoretically predicted values for sufficiently large x (all the way
up to x=10% are also plotted. Their values are referred to the adiabatic energy at infinity wo’. Accord-
ing to Fig. 5 and Table 1, in the limit as k—k* the ion energy at infinity can become tens of times greater
than the adiabatic energy. But even when x=10° the theoretically predicted energy is not more than 3.7
times greater than the adiabatic energy. This amounts to roughly W= 9Tg*. At realistic values x= 10! to
102, the ion energy ~ 5 to 7Tg¥*, which corresponds more or less to the potential of an isolated body in a
plasma [5]. This ion energy has been noted on more than one occasion in experiments [5-7, 15], Taking
the above into account, we note that the flow of rarefied plasma such that Ag* =Xy is actually characterized
by very low efficiency np= ¥2/2MIH, where F(X)=S(P+MIV), since inadmissibly great expansion of the
nozzle is required in order to attain np~ 1 (see Fig. 6). This loss of efficiency is due to the heavy heat
losses beyond the acecelerator cutoff (this heat is used up in "heating® infinity). A similar conclusion re-
tains its validity for plasma accelerators of other types, in which there is direct thermal contact between
the discharge region and infinity.

Note that this loss mechanism is not manifested to its full under laboratory conditions, since the
channel length is actually limited by the wall, and the electrons trapped by the charged wall layer carry to
" the wall a power Hg=1-2T,, i.e., energy losses for each electron amount to not more than 2Te in contrast
to ® TeVM/m in the case of outflow to infinity at Ae*~ X4. And, in effect, in the presence of wall we re~
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quire, in place of the conditions applying to Tg at infinity, the boundary condition at the wall, in order to
adjust the solution; and this boundary condition can be derived with ease by analogy with the derivation of
the diffusional stream of particles [18], by making use of the above-mentionedrandom heat flux (3.2):

To=—frdl JdX (X=X (3.3)

where f is a kinetic coefficient of the order of unity. Constraint (3.3) determines the possibility of suc-
cessful laboratory simulation of the flow of plasma to infinity. In particular, in this case of rarefied plas~
ma, the two flow regimes must diverge markedly because of the heat flux differences.

It is worth remarking, however, that all inferences as to the state at infinity were drawn for the sta-
tionary mode. In the case of the Ag* ® X, flow pattern, when processes taking place over very long channel
lengths are essential, the actual flow regime is in effect nonstationary, and the problem calls for closer
scrutiny.

The behavior of the solution in Mrans-crisis" regimes was also clarified in the course of the com-
putations. It was found that when <8, (T-crisis), te plunges steeply to zero with a slow increase in w,
as previously. The alternative case 8>, (T'-crisis) was more interesting (see Fig. 7; case Tj #0, k=
1.5). In response to a slight rise

p=0p/Pxx1

te declines at first, then increases and levels off at a constant value. The energy due to the increase inte
(and also in tj) increases more rapidly than at u =1. This solution corresponds formally to the presence of
a heat source upstream. When g =4 to 8, the temperatures rise so rapidly that flow becomes blocked. This
phenomenon is reminiscent of the heat crisis familiar in aerodynamics [18].

In conclusion, the author thanks I. K. Fetisov for helpful discussion.
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